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1. Introduction

According to the AdS/CFT duality there is a one-to-one correspondence between the de-

formations of an N = 4, D = 4 supersymmetric Yang-Mills (SYM) by gauge invariant

operators and the deformations of the AdS5 × S5 geometry [1]. On the gauge theory

side the operators are specified by their SO(4, 2) × SO(6) quantum numbers as well as

the number of traces. In the gravity side again the deformations can be labeled by their

representation under the SO(4, 2) × SO(6) isometry of the AdS background. In this pic-

ture our analysis is usually limited only to “small deformations” where we can treat the

deformations as perturbation. (In the gravity side this means that we are ignoring the

back-reaction on the geometry.) In order to obtain a complete picture of the gravity/gauge

theory duality we need, however, to know about the back-reactions and go beyond the per-

turbative description. Although generically very hard, this has been done for some specific

deformations.

In [2], Lin-Lunin-Maldacena (LLM) constructed the gravity solutions corresponding to

all 1/2 BPS deformations of the N = 4 SYM on R × S3, that is deformations of the SYM

by the chiral primary operators. In the half BPS sector the operators are determined by a

single quantum number, the R-charge J , which is equal to their scaling dimension ∆. As

such the chiral primary operators are singlets of SO(4)×SO(4)×U(1) ∈ SO(4, 2)×SO(6).

A chiral primary operator with R-charge J is then completely specified if we determine

how the J chiral fields of the N = 4 SYM Z are distributed in various traces. Being

SO(4) × SO(4) invariant and also noting that their scaling dimension is protected by
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supersymmetry one can argue that these deformations may be described by a 2d fermion

system [3, 4]. This system may also be understood as a specific quantum Hall system with

filling factor equal to one which has a manifest particle-quasihole symmetry [5 – 7].

The LLM geometries preserve 16 supersymmetries which form a PSU(2|2) ×PSU(2|2)
×U(1) superalgebra (for a review on these algebras see e.g. [8]). This supergroup is a sub-

group of PSU(2, 2|4) algebra, the superisometries of the AdS5×S5 geometry. Although the

supersymmetry of the LLM geometries is a subgroup of PSU(2, 2|4), the LLM geometries

are not generically (small) deformations of the AdS5 × S5 and they may have a different

causal structure. The purpose of this paper is to classify the LLM geometries by their

casual structure and asymptotic behavior.

The LLM geometries are solutions of type IIB supergravity given by [2]

ds2 = −h−2
(

dt + Vidxi
)2

+ h2
(

dy2 + dx2
i

)

+ ye−GdΩ2
3 + yeGdΩ̃2

3 , (1.1)

with a constant dilaton and a selfdual RR fiveform turned on and

h−2 = 2y cosh G , z =
1

2
tanh G ,

y∂yVi = εij∂jz , εij∂iVj =
1

y
∂yz .

(1.2)

As we see the whole solution is determined through a single function z = z(y;xi), i = 1, 2.

From (1.2) it is inferred that

∂2
i z + y∂y

(

1

y
∂yz

)

= 0 . (1.3)

In other words z
y2 satisfies a six dimensional Laplace equation. Demanding the smoothness

of the solutions restricts the function z at y = 0 to only take values ±1
2 . The solutions to

(1.3) are then determined by the values of z at y = 0 as the source. That is [2]

z =
y2

π

∫

d2x′ z(0;x′
i)

1

(y2 + (xi − x′
i)

2)2
. (1.4)

Therefore, as it is customary, a generic LLM solution can be specified by a black (white)

color-coding attributed to z = −1/2 (+1/2) regions on the (x1, x2) plane.

The above smoothness condition is not complete unless we add the quantization of the

area on the (x1, x2) plane, explicitly [7, 9]

[x1, x2] = 2πil4p . (1.5)

That is, the (x1, x2) plane is a Moyal plane in which the area of both black and white

regions is quantized. This quantization leads to the quantization of the fiveform flux in the

supergravity level [2].

In this paper we continue the analysis of the LLM geometries, classifying them by

their causal structure and the large y behavior of the z function. In section 2, we show

that the causal boundary of the LLM geometries are only specified by the average of

z0 = z(y = 0) over the (x1, x2) plane, which will be denoted by 〈z0〉. One can then
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distinguish two distinct cases 〈z0〉 = ±1
2 and 〈z0〉 6= ±1

2 . In the former case the boundary

is four dimensional R × S3 and in the latter it is one dimensional light-like. In sections 3

and 4, we refine this classification by considering various moments of the black and white

distribution. In section 3, we consider the 〈z0〉 = ±1
2 cases where one can distinguish two

classes with finite and infinite area of the black region. In both cases this is the zeroth and

second moments of the distribution which is relevant. In section 4, we study the 〈z0〉 6= ±1
2

cases and discuss that the classification maybe refined by the first and the zeroth moments

of the distribution. In sections 3 and 4, we also discuss the dual field theories to each

of these cases separately, which are all related to noncommutative Matrix Chern-Simons

theory. We show how this Matrix Chern-Simons theory can be obtained from the effective

action of half BPS spherical three-branes probing the LLM geometry. The last section 5 is

devoted to discussion and outlook.

2. Causal structure of the LLM geometries

In this section we classify the bubbling geometries with their causal structure. For this,

we investigate the existence of a causal boundary for the geometries and then relate the

structure of the boundary to the properties of the function z on (x1, x2) plane. Our classi-

fication of the causal structure will thus become a classification of the different behaviors z

can have on the plane. This goes in line with the very important feature of these solutions

according which the whole geometry is obtained by the value of z on the (x1, x2) plane.

To simplify the discussion, we make use of the Z2 symmetry of the LLM solutions which

interchanges black and white boundary conditions [9] and therefore we can restrict our

attention to the situation where 0 ≤ z ≤ 1/2. The complementary range −1/2 ≤ z ≤ 0

can be reached from the former by the mentioned Z2 action.

The upshot of our analysis is the following statement:

The average value of z on the (x1, x2) plane, 〈z0〉, determines the causal structure.

For 〈z0〉 = 1/2 the boundary is R × S3 and for 〈z0〉 6= 1/2 it is one dimensional light like.

To prove this statement we define the parameter θ by tan θ = e−G in terms of which

z =
1

2
tanh G =

1

2
cos 2θ , (2.1)

and restrict ourselves to 0 ≤ z ≤ 1
2 , θ ∈ [0, π

2 ]. Using θ instead of G, the LLM ansatz finds

a more illuminating form for the current discussion. Moreover, we use polar coordinates

(r, α, β) for the space (x1, x2, y) with the usual definition

y = r cos α , x1 = r sin α cos β , x2 = r sin α sinβ . (2.2)

In terms of these variables the LLM metric is written as

ds2 =
2r cos α

sin 2θ

[

−(dt + Vrdr + Vγdγ)2 +

+
sin2 2θ

4 cos2 α

(

dr2

r2
+ dα2 + sin2 αdβ2

)

+ sin2 θdΩ2
3 + cos2 θdΩ̃2

3

]

, (2.3)
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where γ = α, β.1 Note that (cf. (2.1)) sin 2θ can only vanish when z = 1/2. The causal

structure (Penrose diagram) of this geometry can be determined if one can bring the metric

into a form which is conformally an Einstein static Universe with all the spatial coordinates

having a finite range.

In the case of generic 10 dimensional LLM geometries, the Penrose diagram is generi-

cally a six dimensional diagram and one cannot suppress more dimensions therefore it will

not be instructive to show the Penrose diagram. Hence, we will only focus on extracting the

structure of the causal boundary which, recalling that LLM geometries are non-singular,

smooth and have no horizons, is the only interesting information contained in the Penrose

diagram.

The causal boundary is the locus which is not formally a part of our space-time, but

in causal contact with all the points in the geometry. That is, it is a place where one

can send and receive light rays in finite coordinate time. In the coordinates where metric

is conformal to Einstein static Universe the points where the conformal factor blows up

determine the locus of the causal boundary. Let us first see whether the above form for

the metric serves this requirement or we have to pull another conformal factor out of the

expression in the brackets.

The conformal factor 2r cos α
sin 2θ can blow up either if sin 2θ = 0 or r cos α goes to infinity.

The former, in turn, can happen either on the (x1, x2) plane or somewhere at y 6= 0. But

it should be noted that as one approaches y = 0 (α = π/2), z behaves as z ∼ 1/2− f(x)y2.

From this it follows that, at finite xi, sin 2θ ∼ y and therefore the conformal factor behaves

as 2r cos α
sin 2θ ∼ 1 and can never blow up on the plane. Outside the (x1, x2) plane, however,

sin 2θ can approach zero only if 〈z0〉 = 1/2 and the limit is reached as y goes to infinity.

It therefore follows that for configurations with 〈z0〉 = 1/2 the above two possibilities

(r cos α → ∞ and sin 2θ = 0) coincide. So for 〈z0〉 = 1
2 configurations and as long as the

causal structure is concerned what matters is the large r behavior where

z ∼ 1

2
− 1

r2
, sin 2θ ∼ 1

r
, Vr ∼ 1

r2
, Vγ ∼ 1

r
. (2.4)

One can now write the asymptotic form of the metric

ds2 =
2cos α

ρ sin 2θ

[

−dt2 + Adρ2 + Bdρdt +

+
sin2 2θ

4 cos2 α
(dα2 + sin2 αdβ2) + sin2 θdΩ2

3 + cos2 θdΩ̃2
3 + O(ρ)

]

,

where

ρ =
1

r
,

and A,B are only functions of α and β with no ρ dependence. Note that as r goes from a

minimum value rmin to infinity, ρ covers a finite range and the above form of the metric has

the desired properties for studying the causal structure. Now at ρ = 0, the conformal factor

1Since in the x1, x2, y coordinate system V only has Vx1
, Vx2

components, Vr and Vα components are not

independent and related as Vα = r cot αVr. Vr, Vβ in terms of V1, V2 are then given by Vr = sin α(V1 cos β +

V2 sin β) and Vβ = r sin α(V2 cos β − V1 sin β).
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blows up and since sin 2θ = 0 at this point, either sin θ or cos θ becomes zero. Therefore,

in either case the radius of one of the three spheres vanishes and what remains in the

bracket is

−dt2 + dΩ2
3 or − dt2 + dΩ̃2

3 , (2.5)

which describes the boundary of the space time, because one can send a light ray along

the ρ direction from a finite ρ0 to ρ = 0 (r = ∞) in a finite coordinate time t. The final

result is that those LLM geometries which are specified by black and white configurations

on (x1, x2) plane with 〈z0〉 = 1/2, have a causal boundary of the form R × S3.

Now let us consider the second possibility for the conformal factor to blow up i.e.

r cos α → ∞ with sin 2θ 6= 0. This can happen for configurations with 0 ≤ 〈z0〉 < 1/2 for

which far from the (x1, x2) plane

z ∼ 〈z0〉 −
1

rn
, sin 2θ ∼ 1 − 4〈z0〉2 +

1

rn
, Vr ∼ 1

r
, Vγ ∼ 1 , (2.6)

where n is a positive number, in the section 4 we will discuss several examples with n = 1, 2

and as we will see momentarily the causal structure is independent of the value of n.

The asymptotic form of the metric in the large r can be written as

ds2 =
2eρ cos α

sin 2θ

[

−dt2 + Adρ2 + Bdρdt +
sin2 2θ

4 cos2 α
×

× (dα2 + sin2 αdβ2) + sin2 θdΩ2
3 + cos2 θdΩ̃2

3 + O(e−ρ)

]

,

where

ρ = ln r ,

and

B = 2rVr , A = −B2

4
+

sin2 2θ

4 cos2 α
,

are functions of α and β with no ρ dependence. The problem now is that ρ still has

an infinite range as r goes from rmin to infinity and hence we have to pull out another

conformal factor from the bracket. This can be done by the following change of variables

t + C±ρ = tan

(

ψ ± ξ

2

)

, C± =
B

2
± sin 2θ

2 cos α
, (2.7)

in terms of which the metric is written as

ds2 ∼
2 exp( sin ξ

cos ψ+cos ξ ) cos α

sin 2θ

1

4 cos2(ψ+ξ
2 ) cos2(ψ−ξ

2 )
×

×
[

−dψ2 + dξ2 + 4cos2

(

ψ + ξ

2

)

cos2

(

ψ − ξ

2

)

(· · · )
]

,

where · · · shows the two three spheres. We can now safely discuss the causal structure of

the above metric. The conformal factor blows up if ψ ± ξ = π. For either choices of the

sign the radius of both of the three spheres vanishes and what remains in the bracket is

– 5 –
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just

−dψ2 + dξ2 ,

which restricting to ψ ± ξ = π, describes a null curve. The causal boundary is thus a one

dimensional light-like space. As the final result, the LLM geometries which are specified

by configurations on (x1, x2) plane with 0 ≤ 〈z0〉 < 1/2 have a one dimensional light-like

boundary.

In light of the above analysis, there are several comments in order:

• Only the average value of the function z on the (x1, x2) plane, 〈z0〉, classifies the bub-

bling geometries in terms of their causal structure and with respect to this property

the geometries fall into two classes. Out of the whole range that the average can

take, 0 ≤ 〈z0〉 ≤ 1/2, the point 〈z0〉 = 1/2 is singled out which constitutes one of the

two classes i.e. geometries with R × S3 as the causal boundary. The complementary

range, 0 ≤ 〈z0〉 < 1/2, constitutes the other class i.e. those with a one dimensional

light-like boundary. In the former case always one of the three spheres shrinks to a

point and the remaining one constitutes the compact part of the boundary whereas

in the latter case both three spheres shrink.

• The difference between the two 〈z0〉 = 1/2, 〈z0〉 6= 1/2 cases stems from the large

r asymptotic behavior of sin 2θ. For the former r sin 2θ ∼ 1 (cf. (2.4)) while in the

latter sin 2θ ∼ 1 − 4〈z0〉2 6= 0 (cf. (2.6)).

• In either 〈z0〉 = 1/2 and 〈z0〉 6= 1/2 cases, the boundary is never along the subspace

(x1, x2, y).

• As two famous examples of the two cases, one can mention the AdS5 × S5 geometry

which has 〈z0〉 = 1/2 and the ten dimensional maximally supersymmetric plane-wave

which has 〈z0〉 = 0. The former has a four dimensional boundary R × S3 [1] and the

latter a one dimensional null boundary [8, 10].

• Although the two 〈z0〉 = 1/2 and 〈z0〉 = −1/2 both have R × S3 as boundary, the

three spheres which appear along the boundary are different, for the former it is

R × S3 and for the latter R × S̃3 (cf. (2.5)). This could be understood easily noting

the Z2 symmetry discussed in [9].

• As we discussed the causal structure only depends on the large r (large y or large xi)

behavior of the z-function and on the other hand it is given by the average value of

z at y = 0. It is desirable to have everything in a uniform language. This is possible

noting the fact that average value of z on the (x1, x2) plane at y = 0 is equal to the

average value of z at y = ∞, i.e.

〈z〉y=0 = 〈z〉y=∞ . (2.8)

This can directly be confirmed using the equation (1.4). In particular we note that

z cannot take values ±1
2 anywhere at finite y 6= 0 [11, 12] and since it asymptotes

to 〈z〉, it can only acquire ±1/2 values at non-zero y, if 〈z〉 = ±1
2 and this can only

happen at y = ∞.
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a b

Figure 1: Two examples for cases with 〈z0〉 = 1/2. (a) A collection of concentric rings with finite

extent and (b) a collection of strips with an infinite extent of black areas.

• The above results are reasonable and expected when we consider continuous defor-

mations of the black and white distribution on the (x1, x2) plane. Firstly, we expect

that the causal structure remains unchanged under such finite smooth continuous de-

formations. Secondly, as can be easily conceived, the point 〈z0〉 = 1/2 is again singled

out as it is a fixed point for the finite deformations. The range 0 ≤ 〈z0〉 < 1/2, how-

ever, can be covered continuously by the deformations and hence we expect that the

corresponding geometries have identical causal structures. So once the connection be-

tween 〈z0〉 and the causal structure is established, from this simple argument one can

both identify the two classes of geometries and also identify the causal boundaries in

each class by looking at well understood examples in either case, say, (asymptotically)

AdS5 × S5 for the first class and plane-waves for the second.

3. LLM geometries with R × S
3 as the boundary

In this section we discuss the first class of geometries mentioned in the previous section i.e.

those which have R × S3 as the causal boundary. As mentioned before, such geometries

must be described by a z function with 〈z0〉 = 1/2. These geometries fall into two classes

themselves. The first class constitutes of geometries which are finite deformations of, and

asymptote to AdS5 × S5. An example of such solutions is a collection of concentric rings

around a circular droplet as the z configuration on the y = 0 plane. In this class of

solutions the black areas on the boundary plane are confined in a finite region and have

a limited extent and thus the 〈z0〉 = 1/2 requirement is trivially satisfied. As the second

class one can consider black areas on the (x1, x2) plane having an infinite extent in such a

way that the ratio of total black to white area is zero. An example of such configurations

is a collection of black strips. Examples of these two cases have been depicted in figure 1.

In the following we discuss these two cases separately by focusing on the rings and strips

examples.

3.1 The case with finite area of the black region

Let us first study geometries which are asymptotically AdS5 × S5, an example of which

has been depicted in figure 1(a). On the gravity side, these geometries are characterized

by quantum numbers which can be identified with the moments of the distribution on the

– 7 –
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(x1, x2) plane, z0 = z(x1, x2; y = 0). The zeroth moment,

N ≡ −1

4π2l4p

∫

d2x

(

z0 −
1

2

)

=
1

4π2l4p

∫

D

d2x , (3.1)

is the total black area and is finite in this case. Note that the first integral is over the

whole (x1, x2) plane while the second is only on the black region, the “droplet”. For the

finite N case the first moment can always be set to zero by an appropriate choice of the

origin of the coordinate system and the second moment J ,

J ≡ 1

16π3l8p

[

∫

D

d2x (x2
1 + x2

2) −
1

2π

(
∫

D

d2x

)2
]

, (3.2)

is related to the angular momentum of the solution [2]. The higher moments describe the

details of the distribution and are not related to global charges of the geometry.

These data, and in particular N,J , can also be read from the large y behavior of z

and this is what we do in the following. Consider the expression for z (1.4) which can be

written as

z(x1, x2, y) =
−y2

π

∫

D

dx′
1dx′

2

[(xi − x′
i)

2 + y2]2
+

1

2
, (3.3)

where the integral is over the droplet (the black region). We now make an expansion in

1/y2

z(x1, x2, y) =
1

2
+

−1

πy2

(
∫

D

d2x′ − 2

y2

∫

D

d2x′(xi − x′
i)

2 + · · ·
)

=
1

2
+

2πl4p
y2

N +
32π2l8p

y4

[(

J +
1

8
N2

)

− N

8π2l4p
x2

i

]

+ O
(

1

y6

)

. (3.4)

In this expression the leading term, 1/2, is 〈z〉y=∞ which is, as mentioned before, equal

to 〈z〉y=0 and determines the causal boundary. The next order term, which is of order
1
y2 , corresponds to the total area of the black regions on the plane, i.e. N which is one of

the global charges and also a good quantum number for the configuration. The 1
y4 term

determines the next quantum number J . As mentioned earlier, the geometries on this case

are asymptotically AdS5 × S5 geometries with R4
AdS = 4πl4pN , which is deformed by a

collection of giant gravitons carrying angular momentum J .

One may ask about the dual gauge theory picture for the LLM geometries. The sector

in the N = 4 U(N) SYM dual gauge theory which is equivalent to the above geometries

is equivalently described by a system of N one dimensional fermions [2 – 4, 13, 14] and the

phase space of these fermions may directly be identified with the (x1, x2) plane in the LLM

geometries [7]. In fact, it has been argued that the system of these fermions is equivalent

to a quantum Hall system (QHS) with filling factor equal to one, a system with explicit

particle-quasihole symmetry [5 – 7].

As has been reviewed and discussed in some detail in [7], the two dimensional QHS

can be described by a Matrix Chern-Simons theory, or a Chern-Simons theory on the

noncommutative Moyal plane. Here we show a different route to obtain the Matrix Chern-

Simons theory, other than starting from the N = 4 U(N) SYM and restricting to the sector

– 8 –
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involving only chiral primary operators. The idea is to use spherical three brane probes to

probe the completely white (x1, x2) plane. The number of branes we choose is of course N ,

the area of the black region (in units of 4π2l4p). Our intuition is that the LLM geometry

with black region of area N is the near horizon geometry of the supergravity solution

corresponding to N spherical branes on the totally white (x1, x2) plane LLM solution.

Or equivalently, back reaction of N spherical three-branes on the totally white (x1, x2)

plane is described by the LLM geometries described by droplets of area N . In particular

the AdS5 × S5 geometry in the global coordinates, which is described by a black disk in

the background white (x1, x2) plane, is nothing but the near horizon geometry of the N

spherical three branes in the totally white (x1, x2) plane background.

Our strategy is then to apply the BFSS matrix theory ideas [15]: the fact that M/string

theory on a background is described by the low energy effective theory of D-branes probing

that geometry while we can generically ignore the back reaction of the branes on the

geometry. Note that this is not exactly what we do in the AdS/CFT type dualities.

Here we start with the LLM geometry corresponding to the totally white (x1, x2) plane as

the background and probe it with spherical three-branes. These spherical branes are the

appropriate objects for the sector we are interested in, the half BPS objects and the LLM

geometries. 2 In fact it has been conjectured that [16] the spherical three-branes with unit

angular momentum, the “tiny gravitons”, are capable of describing, not only the theory in

the half BPS sector [17], but also the full type IIB string theory on the plane-wave or the

AdS5 × S5 in the DLCQ description.

Consider the totally white boundary condition on the y = 0 plane where z = 1/2

everywhere on the plane. This boundary condition results in a z that is constant and equal

to 1/2 everywhere in its (x1, x2, y) domain which implies that G is also a constant and very

large. One also obtains that V = 0. The background reads as

ds2 = h−2(−dt2 + dΩ2
3 + h4dxidxi) + h2(dy2 + y2dΩ̃2

3) , (3.5)

h−2 = yeG .

F(5) =
1

4

(

− d(y2e2G) ∧ dt + εijdxi ∧ dxj

)

∧ dΩ3 . (3.6)

We choose to probe the above geometry with N spherical three-branes wrapping around

Ω3 and since G → ∞ we take y → 0 such that yeG ≡ h−2 is constant. That is, we freeze

the fluctuations of the brane, as we are only interested in the half BPS configurations.

Therefore, the second part of the metric becomes irrelevant in this analysis and the first

term in the expression for F(5) vanishes. As a result, the part of the RR four form which

couples to the branes is

C(4) =
1

4
εijx

idxj ∧ dΩ3 . (3.7)

Assuming that the gauge and fermionic fields on the branes are not excited (which is

2Although similar ideas and using the three brane probes have been considered previously [14], our

approach is different in the sense that we directly apply the BFSS matrix theory ideas.
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dictated by the half BPS condition), the world volume action is written as

S = − 1

gs
V ol(Ω3)

∫

dt h−4 Tr

√

1 − h4(ẊiẊi) + V ol(Ω3)

∫

dt
1

4
εij Tr(XiẊj) , (3.8)

where Xi are N×N unitary matrices representing the collective coordinates of the N probe

branes. To write the above action for a collection of branes we have used the prescriptions

of [18].

Next we expand the square root, drop the overall factor of V ol(Ω3) and absorb gs and

some numeric factors in a scaling of t. The nontrivial part of the action becomes

S =

∫

dt Tr

(

1

2
D0X

iD0Xi +
1

2
εijX

iD0X
j

)

. (3.9)

In the above action, along with the arguments of [18], we have re-introduced the only

component of the 0 + 1 gauge field A0 through the covariant derivative

D0X
i = ∂0X

i + i[A0,X
i] .

This action is nothing but the matrix version of the Landau problem i.e. the problem of

N electric charges on a plane in a constant magnetic field with the potential Ai = 1
2εijx

j .

In the limit where the branes are sufficiently separated such that the matrices become

diagonal, the above action exactly reduces to that for the Landau problem.

If we require the spherical branes to be BPS, we have to impose a further restriction

on the above action. It is well known that this requirement amounts to reducing the action

to the Chern-Simons term i.e. dropping the kinetic term. In terms of the Landau problem,

this is equivalent to going to the Lowest Landau Level (LLL) which is described by a

Quantum Hall System (QHS) [7]. In the end, the dynamics of BPS spherical three branes

in the background (3.6) is given by

S =

∫

dt εij Tr( XiD0X
j) . (3.10)

An important conceptual consequence of the above analysis is the identification of

the coordinates xi with the collective coordinates of probe branes and since these are

expressed in terms of matrices Xi, noncommutativity of the plane follows immediately.

This direct link is not visible in the usual AdS/CFT guided study of the LLM geometries.

Furthermore, the commutator [X1,X2] is proportional to the inverse of the density operator

for the particles [7] and the Wigner function corresponding to this operator is identified

with the distribution z̃ = z − 1
2 on the (x1, x2) plane [14, 19, 20].

3.2 The case with infinite area of the black region

The second class of 〈z0〉 = 1
2 configurations that we consider are those with infinite area of

black region, i.e. infinite N . The simplest case of this case, on which we will concentrate

in this section, are those depicted figure 1(b). As the “droplets” have infinite extent in

one direction, the quantum numbers N and J which are defined through (3.1) and (3.2)
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characterize states in the previous case are not relevant for these geometries. In order to

read the good quantum numbers, similarly to the previous case which was done in [2], we

analyze the large y behavior of the z-function. The idea is to identify the ADM mass,

(angular) momentum and other physical quantities of the metric. The starting point is

(1.4) which noting the translation symmetry along x1 leads to

z =
1

2
− y2

2

∫

S

dx′
2

1

((x2 − x′
2)

2 + y2)3/2
, (3.11)

where the integral S is over the black strips. If the distribution of the black strips along

x2 direction has a finite extent, one can perform a large y expansion:

z =
1

2
− ∆

2y
+

3

4y3

[

∆x2
2 +

∆3

12
+ K

]

+ O
(

1

y5

)

, (3.12)

where

∆ ≡
∫

S

dx′
2 , (3.13a)

K ≡
∫

S

dx′
2 x′2

2 −
∆3

12
, (3.13b)

and we have chosen the origin so that the first moment is zero, i.e.
∫

S
dx′

2 x′
2 = 0. ∆

and K, which are respectively the zeroth and the second moment of the distribution of the

strips, are among the quantum numbers which describe the solutions of this case.

From (3.12) it is evident that the average of z is 1
2 , however, the solution is not asymp-

totically AdS. This can be seen from the next leading term which unlike the asymptotically

AdS case, goes as 1
y . As we’ll see momentarily the quantum numbers ∆,K respectively

play the role of N,J in the AdS case.

In this case the metric has a translational symmetry along the x1 direction and one

can compactify the x1 direction on a circle of radius R. The (x1, x2) plane then becomes a

noncommutative cylinder and hence the spectrum of the x2 becomes discrete (e.g. see [23]),

i.e. the width of black (or white) strips is an integer multiple of
2π2l4p

R :

∆ =
2π2l4p

R
k, k ∈ Z . (3.14)

(Note that in our units, x1, x2, y and hence ∆, R all are of dimension of length squared.)

Let us consider the single strip case of width ∆. For this case the quantum number K

vanishes. In the large y limit 3

ds2 = yeG
[

−dt2 + dΩ2
3

]

+ (yeG)−1
[

dx2
1 + dx2

2 + dy2 + y2dΩ̃2
3

]

= f−1
[

−dt2 + dΩ2
3

]

+ f
[

dx2
1 + dr2 + r2dΩ̃2

4

]

,
(3.15)

3To obtain the metric we also need the Vi’s which are given by

V2 = 0 , V1 = −
1

2

Z

S

dx′

2

x2 − x′
2

((x2 − x′
2
)2 + y2)3/2

= −
1

2

x2

y3
∆ + O

„

1

y5

«

.

– 11 –



J
H
E
P
0
4
(
2
0
0
6
)
0
4
5

where r2 = x2
2 + y2 and f = f(r) = (yeG)2 = ∆

r3 . The above metric is the solution

corresponding to the near horizon limit of k ∝ ∆ (cf. (3.14)) coincident spherical three

branes (giant gravitons) which are uniformly smeared along the x1 direction. As we see

in this limit, and for the single strip case, the SO(4) × SO(4) isometry is enhanced to

SO(4)×SO(5). One may now make a T-duality along the x1 direction, where the solution

becomes that of k coincident D4-branes with the worldvolume along t, x1,Ω3. The low

energy effective theory is then a supersymmetric U(k) 4 + 1 dimensional gauge theory on

R1,1 × S3 [22]. The action of this gauge theory besides the Yang-Mills part also contains

a term coming from the Chern-Simons piece showing the coupling of the brane to the

background RR four-form field strength; this additional term can be worked out using

results of [18], as we did in the previous subsection. In the half BPS sector one should then

turn off the gauge fields along the S3 and the scalar fluctuations along S̃3. This leads to

the effective 1 + 1 dimensional U(k) gauge theory:

S =

∫

d2xTr
[

F 2
µν + (DµX2)

2 + εµνFµνX2

]

, (3.16)

where X2 is the scalar field corresponding to the fluctuations of the branes along the x2

direction. To restrict the above action to the half BPS sector one still needs to impose a

condition, which parallels that of going to the lowest Landau level in the related quantum

Hall problem discussed in the previous subsection. That is, in the half BPS sector one can

drop the first two terms and remain with the last.

One may consider a collection of strips of width ∆i. The T-dual of the asymptotic

form of the metric is that of stacks of ki number of D4-branes separated along the x2

direction, and hence the dual field theory is a generalization of the above gauge theory

to
∏

i U(ki) theory, which can in part be understood as a U(
∑

i ki) gauge theory Higgsed

down to
∏

i U(ki). The quantum number K is then related to the overall characteristic

of the Higgsing. This theory may also be uplifted to M-theory as the half BPS sector

of the mass deformed D = 3,N = 8 SCFT theory and the corresponding Bena-Warner

supergravity solution [24]. As these theories have been studied in some detail in [2, 22]

here we do not analyze them further.

4. LLM geometries with one dimensional null boundary

In this section we elaborate more on the LLM geometries with 〈z0〉 6= 1
2 . One may recognize

several different sub-classes, all of which are common in the fact that, in order to have

〈z0〉 6= 1
2 , the black region should be extended off to infinity. That is, they all come with

N → ∞. For the same reason the second moment J also goes to infinity. Therefore, for

these solutions one should find other good quantum numbers.

Here we only focus on three interesting cases which have different qualitative behavior

and introduce good quantum numbers for each case. Our guiding criterion for distinguish-

ing these classes is the symmetry of the distribution z on the (x1, x2) plane. Given a

two dimensional plane we can have translational, rotational and scaling symmetries which

could be used as a basis for distinguishing various cases. The three cases which we consider
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a b c d

Figure 2: Four configurations with 〈z0〉 6= 1/2 classified by their symmetry on the (x1, x2) plane.

(a) Translational symmetry along x1, (b) Rotational symmetry (c) Scaling symmetry and (d) Trans-

lational symmetry in both of x1 and x2 directions, in which case one might compactify (x1, x2) plane

on a two torus.

are those which are asymptotically plane-wave, these have translational symmetry along

x1 direction; those which have “scaling symmetry” in the (x1, x2) plane and finally those

in which (x1, x2) plane is wrapping a two tours. The first case has been discussed in some

detail in [2] and the follow-up papers and we will be very brief on that. The latter two cases

have been previously considered in [21, 22] and here we will analyze some other aspects of

them. An example of each of these cases has been depicted in figure 2.

4.1 Asymptotically plane-wave LLM geometries

As the first case of 〈z0〉 6= 1/2 we consider asymptotically plane-wave geometries for which

〈z0〉 = 0. This case and the case discussed in section 3.1 are the only two examples

which can be understood as (finite) half BPS deformations of a maximally supersymmetric

background, that is the AdS5 × S5 and the plane-wave backgrounds. Here again we first

identify the good quantum numbers characterizing this class of solutions. For this purpose,

similarly to the previous cases, we study the large y behavior of z. The expression to

begin with is (3.11) but we should keep in mind that the integral is now over the infinite

background black sea plus the black strips. Choosing the origin of x2 to be on the edge of

the sea, the expression for z reads

z =
x2

2
√

x2
2 + y2

− y2

2

∫

S

dx′
2

1

((x2 − x′
2)

2 + y2)3/2
. (4.1)

For finitely extended strips in x2 direction, one might perform the large y expansion of z:

z =
x2 − ∆

2y
+

3

4y3

[

−(x2 − ∆)3

3
− 2x2K1 + K2

]

+ O
(

1

y5

)

=
x2 − ∆

2
√

(x2 − ∆)2 + y2
+

3

4y3
(K2 − 2x2K1) + O

(

1

y5

)

, (4.2)

where

∆ ≡
∫

S

dx′
2 , (4.3a)

K1 ≡
∫

S

dx′
2 x′

2 −
∆2

2
, (4.3b)
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K2 ≡
∫

S

dx′
2 x′2

2 −
∆3

3
. (4.3c)

There are a number of points worth mentioning about the above expansion.

• There is no constant term and the expansion starts as 1/y, reflecting the fact that

〈z0〉 = 0.

• As has been made explicit in the second line of (4.1), the large y expansion takes

a simple form using the expansion of x2−∆

2
√

(x2−∆)2+y2
which is the z function for an

infinite black sea with the edge at x2 = ∆. This will be useful in finding the physical

interpretation of K1,K2.

• Because of the black sea, there is a preferred origin for x2 and therefore, unlike

the strip case, the integral appearing in the expression for K1 does include physical

information that cannot be removed by a coordinate transformation.

We can now read off the quantum numbers of the solution, ∆ and K1, which are in

fact the zeroth and first moments of the perturbations around the plane-wave solution

respectively. The width ∆ becomes quantized (cf. discussions of section 3.2) once we

compactify the x1 direction on a circle of radius R. The geometry described by the z in

this case, then corresponds to (the near horizon geometry) of a stack of k = R
2π2l4p

∆ spherical

three brane giants smeared along the x1 direction probing the background plane-wave.

In this case, upon compactification of x1 on a circle, one may perform a light-cone

quantization of the string theory on this background. This configuration of strips then

corresponds to a specific state of the DLCQ in the sector with light-cone momentum K1,

explicitly, K1 which is the first moment of the distribution of strips, may be identified with

p+ of the DLCQ theory. This can be seen from the metric and the radii of the three spheres

there and the fact that performing the analysis of stability of spherical branes probing the

background plane-wave, similarly to [25], one finds that the radius squared of the giant

three brane gravitons is proportional to p+. In [16] a matrix theory formulation of DLCQ

of type IIB string on the plane-wave has been proposed and in [17] it was shown that the

half BPS sector of the tiny graviton matrix theory can be identified with configurations of

strips (or Young tableaux of K1 number of boxes). One of the outcomes of the tiny graviton

matrix theory is the fact that the (x1, x2) plane is indeed a noncommutative cylinder [26].

To get a better feel of what K1 is, let us compute it for the example shown in figure 3

(a)

K1 =

∫ a+∆

a
dx′ x′ − ∆2

2
= a∆ . (4.4)

The generalization of the above result to multi strips with (ai,∆i), where ai and ∆i are

respectively the width of the ith successive white and black strips, is straightforward:

K1 =
∑

i

σi∆i , σi =

i
∑

j=1

aj .
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∆

a

{

{r0

r1
r
2

Penrose limit

Figure 3: The rings configurations with 〈z0〉 = 1

2
and strips configurations of 〈z0〉 = 0 are related

by Penrose limit. That is, Penrose limit changes the structure of the causal boundary, as noted

in [10]. The expression for J of the rings then directly goes over to K1 of the strips.

In the language of the Young tableaux corresponding to the configuration of these strips [2,

17] K1 is nothing but the total number of boxes in the tableau which, as discussed in [17],

is equivalent to the light-cone momentum p+.

One may also think about K1 noting that the strips configuration can be obtained as

the Penrose limit of multi concentric ring configuration [2, 27]. For the single strip this has

been depicted in figure 3. It is interesting to compute J for the latter and compare it with

K1

J =
1

16π2l8p
(r2

2 − r2
1)(r

2
1 − r2

0) . (4.5)

While J is proportional to the product of the areas of black and white rings, K1 is pro-

portional to the product of the widths of black and white strips. If we compactify x1 on a

circle of radius R, K1 is also proportional to the area of white strip times the area of the

black strip. One can also directly apply the Penrose limit to expression for J to obtain K1.

To see this it is enough to recall that Penrose limit amounts to [27]

r0 → ∞ , r1 − r0 =
a

r0
, r2 − r1 =

∆

r0
, a,∆ = fixed . (4.6)

The dual gauge theory and 2d fermion picture for this case has been analyzed in [2, 22]

and we skip that here.

4.2 Configurations with scaling symmetry on (x1, x2) plane

In this section we study configurations with scaling symmetry on the (x1, x2) plane, that

is

z(λx1, λx2; 0) = z(x1, x2; 0) . (4.7)

These configurations have been discussed in [21]. It is then immediate, using (1.2) and

(1.4), to check that

z(λx1, λx2;λy) = z(x1, x2; y) , Vi(λx1, λx2;λy) =
1

λ
Vi(x1, x2; y) , (4.8)
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a b1 b2

Figure 4: A generic configuration with scaling symmetry. In figure (a) there is a “classical”

configuration and in (b1) and (b2) there are two possibilities for “quantum” resolution, in which

the sharp distribution at xi = 0 has been smoothed out.

and hence ds2 → λds2. One should, however, note that this scaling symmetry in z is a

classical one and has anomaly. This is due to the fact that (x1, x2) plane is Moyal plane

and for fixed lp, (1.5) breaks the scaling symmetry. The classical configurations which

exhibit the scaling symmetry (4.7) are of the form of wedges depicted in figure 4 (a). The

origin xi = 0 which is the fixed point of the scaling xi → λxi is a “singular” point in the

sense that on the quantum (Moyal) plane one can never focus on a given point with infinite

precision. At quantum level, however, this “singularity” is resolved by quantum effects.

The two possibilities for this resolution is depicted in figure 4 (b1, b2).

Let us now focus on the z function for these configurations to read the quantum

numbers. We use polar coordinates (r, φ) on the plane in terms of which z can be written

as

z =
1

2
− y2

π

∫

D

dφ′ dr′ r′
1

(r2 − 2rr′ cos(φ − φ′) + r′2 + y2)2
. (4.9)

Since we are interested in the large y behavior of the z function we can safely take r also

to be large (compared to l2p) and hence ignore the “quantum” effects and the fact that

the scaling symmetry is not exact.4 One can then use the scaling symmetry to perform

integration over r′ to obtain5

z =
1

2
− y2

π

∫

W

dφ′

[

1

2(r2 + y2)
+

1

2

r2 cos2(φ − φ′)

(r2 + y2)(r2 sin2(φ − φ′) + y2)
+

+
1

2

r cos(φ − φ′)

(r2 sin2(φ − φ′) + y2)3/2

(

π

2
+ tan−1 r cos(φ − φ′)

√

r2 sin2(φ − φ′) + y2

)

]

,

(4.10)

where the integral W is over black wedges. We can now make the large y expansion for z

z =
1

2
− Ω

2π
− r cos φ

4y
L1 −

r2

4πy2

[

2 cos φL1 + cos 2φL2 + sin 2φL′
2

]

+ O
(

r3

y3

)

. (4.11)

In the above expression

Ω =

∫

W

dφ′ , (4.12a)

4Of course noting (4.8) at small and large y’s values of z are essentially the same. What we mean by

large y expansion in this case is then considering the l2p ¿ r ¿ y and expanding in powers of r/y.
5It is interesting to note that for the wedge configurations in general one has z = 〈z0〉 + εijxiVj .
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a b

Figure 5: Two special cases of the wedge configurations. In figure (a) there is a configuration with

〈z0〉 6= 0 and L1 = 0. In figure (b) there is a configuration with Ω = π and L1 = 0 for which the

large y expansion starts at r2/y2 order. This case has been studied in [21].

L1 =

∫

W

dφ′ cos φ′ , (4.12b)

L2 =

∫

W

dφ′ cos 2φ′ , L′
2 =

∫

W

dφ′ sin 2φ′ , (4.12c)

and we have chosen the origin of the angular coordinate such that
∫

W
dφ′ sinφ′ = 0.

The leading term is the zeroth angular moment which is clearly equal to 〈z0〉 = 1
2 − Ω

2π .

It is evident that 〈z0〉 6= 1
2 , unless Ω is vanishing. Therefore, the wedges fall into the class

of configurations with one dimensional null boundary. As we see (4.11) contains all powers,

even and odd, of r/y. This may be compared with the case of rings or strips where we only

have even and odd powers of 1/y, respectively.

Unlike the previous cases one can have wedge configurations where the zeroth and/or

first leading terms vanish, i.e. Ω = π and/or L1 = 0 and hence the leading order can

become O( r2

y2 ). Examples of this case have been depicted in figure 5 . Another special

and interesting class of these configurations are those which are invariant under the Z2

symmetry which exchanges the black and white regions and hence they all have 〈z0〉 = 0.

The plane-wave background is a special case of this kind. One may also recognize the

class of configurations which keep a discrete subgroup of the U(1) rotation symmetry of

the (x1, x2) plane. The overlap of the latter two classes are the configurations which are

composed of 2N successive black and white wedges of opening π/N . This configuration

keeps a ZN subgroup of the rotations. Since the configuration is also invariant under the

black/white exchange Z2 symmetry, the symmetry of this case enhances to Z2N . Despite of

the fact that the wedge configurations receive quantum correction and the scaling symmetry

is anomalous, this Z2N symmetry can be exact. This is due to the fact that (1.5) is invariant

under U(1) rotations. An example of this kind has been shown in figure 6. One may then

consider ZN or Z2N orbifolds of (x1, x2) plane. The quantum effects discussed earlier in this

section will then resolve the orbifold singularity. This provides a nice and simple example

of how stringy/quantum effects can resolve singularities.

4.3 The cases with (x1, x2) plane on a torus

As the last example of the cases with one dimensional light-like boundary (that is the cases

with 〈z0〉 6= 1
2 ) we consider the case where the (x1, x2) space is a 2-torus with radii (R1, R2).
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Figure 6: An example of the wedge configuration with Z2N symmetry and one of its possible

quantum mechanically “resolved” versions. In this figure N = 3. Note that Z2N = Z2 ×ZN , where

the Z2 part is the black/white exchange symmetry and the ZN part is coming from the rotations

on (x1, x2) plane. As we see both of the left and right figures exhibit the Z2N symmetry.

For this we take the distribution on the (x1, x2) plane to be periodic in both directions

with periodicity (2πR1, 2πR2):

z(x1 + 2πR1, x2 + 2πR2; 0) = z(x1, x2; 0) . (4.13)

This is a distribution with infinite extent in both directions as opposed to the finite

extent for asymptotically AdS5×S5 and the strips configurations with infinite extent in one

direction, discussed in section 3. The main point here is to identify the relevant quantum

numbers describing a given configuration. The first point to note is that the periodicity on

the plane results in the periodicity for z at y 6= 0 as can easily be checked

z(xi + 2πRi; y) =
y2

π

∫

z(x′
i; 0)dx′

1dx′
2

[(xi + 2πRi − x′
i)

2 + y2]2
=

y2

π

∫

z(x′
i + 2πRi; 0)dx′

1dx′
2

[(xi − x′
i)

2 + y2]2

= z(xi; y) ,

where we have used (4.13).

Because of the periodicity it is most natural to make a Fourier expansion of the distri-

bution on the plane and as we will see the good quantum number(s) for this case should

be sought for among these Fourier modes. Let us first consider a general distribution and

instead of Taylor expansion in powers of 1/y, Fourier transform it such that it is appli-

cable to the previous cases. We will then focus on the periodic distribution. Consider a

configuration which is given by z(x1, x2, 0) for which we can write

z(x1, x2, 0) =

∫

z0(p, q)eipx1eiqx2dp dq . (4.14)

The modes z0(p, q) can be read as

z0(p, q) =
1

(2π)2

∫

z(x1, x2, 0)e
−ipx1e−iqx2dx1dx2 . (4.15)
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Now plug this expansion in the expression for z

z(x1, x2, y) =

∫

dpdqz0(p, q)eipx1eiqx2I(p, q, y) , (4.16)

where [28]

I(p, q, y) =
1

π

∫

dudv
eipyueiqyv

(1 + u2 + v2)2
= y

√

p2 + q2K1(y
√

p2 + q2) , (4.17)

where K1(x) is the modified Bessel function. For future use we write the asymptotic

behavior of this function

xK1(x) ≈















1 x ¿ 1 ,

√

π

2
xe−x x À 1 .

(4.18)

Now consider a finite extent distribution. We know from the analysis of the previous

sections that at large values for y the leading term for z is the average value on the plane,

1/2, and the subleading terms form an expansion in powers of 1/y2. We can reproduce

these results by the Fourier analysis of this section as follows. Let us take the following

Gaussian distribution on the plane

z(x1, x2, 0) =
1

2
− exp

(

−x2
1 + x2

2

l2

)

. (4.19)

This does not exactly produce an allowed LLM boundary condition but we take it as an

approximation to a disk with radius ∼ l. We now Fourier expand the second term on the

right hand side and plug it in the expression for z. We find that at large values for y

z(x1, x2, y) ≈ 1

2
− l2

25/2π1/2

∫

dp dqeipx1eiqx2

(

y
√

t
)1/2

exp

(

− tl2

4

)

exp
(

−y
√

t
)

, (4.20)

where t = p2 + q2. Now if we set x1 = x2 = 0, we find that

z ≈ 1

2
− π1/2

23/2

l2

y2

∫

du u3/2 exp

[

−
(

u +
u2l2

4y2

)]

. (4.21)

Note that the dominant contribution to the integral comes from u < y/l and therefore

one can make an expansion in (ul
y )2. Thus we see that for this configuration the large

y behavior is as we expected. The above analysis can of course be repeated for all the

previous cases.

We now turn to the case of torus where because of periodicity the Fourier expansion

is a discrete one and one has

z(x1, x2, 0) =
∑

m,n

zmne
imx1

R1 e
inx2

R2 , (4.22)

where

zmn =
1

(2π)2R1R2

∫

dx1dx2 z(x1, x2, 0)e
−imx1

R1 e
−inx2

R2 , (4.23)
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and the integration is over the fundamental region. We use this expansion to compute z

z(x1, x2, y) =
∑

m,n

zmne
imx1

R1 e
inx2

R2 Imn(y) , (4.24)

where

Imn(y) = y
√

tK1(y
√

t) , (4.25)

with

t =
m2

R2
1

+
n2

R2
2

. (4.26)

In the large y limit and at x1 = x2 = 0 this expression is approximated by

z ≈ z00 +
∑

m,n 6=0

zmn

√

π

2
(y
√

t)1/2 exp(−y
√

t) . (4.27)

Note that we have separated the z00 mode because for this mode t = 0 and the large

y approximation for K1 does not work. Instead, for this single mode, we must use the

approximate expression of K1 for y
√

t ¿ 1. The end result is that for large y all but the

zero mode are suppressed exponentially. This behavior is different from what we saw in the

previous cases and a single mode, z00, becomes distinct. This is nothing but the average

value of z on the plane or the zeroth moment of the distribution and we identify it as the

relevant quantum number for such distributions. For the case where in a basic cell of the

torus we have K units of the white region and N units of the black region, i.e.

R1R2 = l4p(N + K) , (4.28)

the average z is

〈z0〉 = z00 =
1

2

K − N

K + N
, (4.29)

which is not 1
2 unless N = 0. Obviously the Z2 which exchanges black and white regions

appears as N ↔ K symmetry. In the corresponding quantum Hall terminology, despite the

fact that 1
2 − 〈z0〉 = N

N+K gives the density of the particles which is generically not equal

to zero or one, microscopically we still have an integer (as opposed to fractional) quantum

Hall system [7].

Finding the dual field theory for these configurations requires some care. As in sec-

tion 3.1 we use the spherical threebrane probes. In this case, however, to simplify the

picture we consider a limit where the background is essentially looking like a “gray” back-

ground, as depicted in right figure of figure 7. This is basically when our probes are viewing

the (x1, x2) plane at large y. The full picture is more complicated and to analyze that we

need to really consider the little string theory [22]. In this case one has the option of

using either the giant or the dual giant probes. In the probe approximation, the system is

described by the spherical branes represented by the distribution in a single cell to be the

objects which probe the background created by the rest of the distribution on the (x1, x2)

plane. So our probes are either N branes wrapping Ω3 (dual giants), represented by the

black area, or K branes wrapping Ω̃3 (giants) represented by the white area, as depicted
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2πR1

2
π
R

2

Figure 7: A generic configuration on the torus lattice. The left figure shows the black and white

distribution and the right figure is the same distribution averaged over. This has been depicted

using a gray color. A similar color coding was also used in [19, 9, 22].

Figure 8: The dual gauge theory description of the toroidal configuration given by the average

〈z0〉 6= 1

2
, which has been depicted as the gray background, can be either through the theory of

giant threebranes (the right figure) or that of the dual giant threebranes (the left figure).

in figure 8. The dual giant gravitons (giant gravitons) description is a good one in the

N ¿ K (K ¿ N) regimes.

To obtain the dual theory we need to refine analysis of section 3.1. In order that

we need to have the relevant four-forms in the background. In the large y limit where

z = 〈z〉 (recall the exponential fall-off in z − 〈z〉, cf. (4.27)), the part of the background

RR four-form which is relevant to the spherical brane probes is [2]

C4 = A ∧ dΩ3 + A ∧ dΩ̃3 ,

A =
1

4

(

〈z〉 +
1

2

)

εijx
idxj , A =

1

4

(

〈z〉 − 1

2

)

εijx
idxj , (4.30)

where in the torus case εij , which is standing as the volume form (or Kahler form) on the

torus, is proportional to
√

det g = R1R2

l4p
= N + K (4.28). For the N giant probes (or K

dual giant probes) the theory is then a quantum Hall system in the background magnetic

field B (or B) where

B =
1

2

(

〈z〉 +
1

2

)

(N + K) =
1

4
K ,

B =
1

2

(

〈z〉 +
1

2

)

(N + K) = −1

4
N . (4.31)
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Repeating the analysis of section 3.1 the theory of this probes is U(N) Chern-Simons

Matrix theory at level K (or U(K) Chern-Simons Matrix theory at level N) on the two

torus, that is:

S =
K

4π

∫

dt TrN (εijX
iD0X

j) , (4.32a)

UjXiU
−1
j = Xi + 2πδijRi , i, j = 1, 2 . (4.32b)

This is the result discussed in [22]. The fact that the coordinates on the torus do not

commute, as in (1.5), results from the fermionic nature of the droplets or incompressibility

of the corresponding quantum Hall liquid [7]. It is worth noting that although here we are

considering the toroidal case, the above arguments also hold for a generic black and white

configuration, e.g. consisting of (infinitely) many droplets, with 〈z0〉 6= 1
2 .

The two theories, U(N)K and U(K)N are then related by the Z2 black and white

exchange symmetry and hence one would expect them to be equivalent, the level rank

duality. This has indeed been shown and discussed in [29]. This suggests that, although

we obtained U(N)K in the N ¿ K limit, it should be a good description for generic N, K

[22].

The geometry described by the configuration depicted in figure 7 (the gray (x1, x2)

plane) is the near horizon geometry of K giants and N dual giants smeared uniformly in

the x1 and x2 directions. As discussed in [22] one may perform two T-dualities and an

S-duality on the above brane configuration. This geometry then goes over to (the near

horizon geometry of) intersection of NS5branes of type IIB N of which have worldvolume

along (t, x1, x2,Ω3) and K of them along (t, x1, x2, Ω̃3). Again in the N ¿ K limit one can

take the K fivebranes as background and the stack of N as probes which in the 1/2 BPS

sector this leads to (2+1) dimensional U(N)K Chern-Simons gauge theory on the the dual

torus.

One may follow the above dualities directly at the level of the Matrix Chern-Simons

theory. As it is well-known from the BFSS Matrix theory literature [15]

Matrix theory (0 + 1) gauge theory/T 2 ≡ (2 + 1) gauge theory/T̃ 2 , (4.33)

where T̃ 2 is the torus dual to T 2. Hence, recalling that Chern-Simons is a topological

theory, starting from a Matrix U(N)K Chern-Simons theory on the T 2 one obtains a

(2 + 1) dimensional U(N)K Chern-Simons theory on the dual torus T̃ 2.

Of course the above statement can be written in a more general way. Recall that

the T-duality group on the torus is SL(2, Z)τ × SL(2, Z)ρ where the SL(2, Z)ρ is acting

on the Kahler structure ρ and SL(2, Z)τ on the complex structure τ . The SL(2, Z)τ is

obviously the symmetry of both sides on (4.33). The SL(2, Z)ρ is, however, non-trivial and

in (4.33) only a Z2 ∈ SL(2, Z)ρ, which maps the pure imaginary ρ to a pure imaginary ρ,

has become manifest. Generically SL(2, Z)ρ relate the Matrix theory to a (2 + 1) theory

on a noncommutative torus T 2
Θ [30]

Matrix theory (0 + 1) gauge theory/T 2 ≡ (2 + 1) gauge theory/T̃ 2
Θ , (4.34)
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Figure 9: Examples of distributions on a torus: a distribution with a (1+1) dimensional pertur-

bative field theory description (the left figure) and a generic distribution (the right figure).

where SL(2, Z)ρ on Θ act as Θ → aΘ+b
cΘ+d , ad − bc = 1, a, b, c, d ∈ Z. In the language of

probes U(N)K Chern-Simons on T 2
Θ is the theory on (non-marginal) bound state of N

(NS5,D3) branes probing another (NS5,D3) bound state. We would like to stress that the

black/white Z2 exchange symmetry is not a part of the T-duality group SL(2, Z)ρ and is

a symmetry which becomes manifest only in the 1/2 BPS sector and in the corresponding

LLM geometries.

Although the above (2 + 1) dimensional U(N)K theory provides a generically good

description, there are some specific black and white configurations on the torus where

a (1 + 1) dimensional description may become a perturbative description. This is the

case where for a given N, K the black region is like a narrow strip, as depicted in fig-

ure 9. In this case one can approximate the system with a system of strips which we

discussed in section 3.2. In the gravity picture, this is basically performing one T-duality.

In the dual gauge (0+1) theory (which is the 1/2 BPS sector of a 3 + 1 dimensional

gauge theory) this can also be understood through the “deconstruction” phenomena [31].

5. Discussion and outlook

In this paper we have studied the ten dimensional LLM half BPS “bubbling geometries” [2]

and tried to classify them. As the ten dimensional LLM geometries are completely spec-

ified by the black/white distribution on the (x1, x2) plane, z, in our classification we

focused on the z-function. As the first criterion we focused on the causal structure of

the LLM geometries. Since the LLM geometries are horizon-free non-singular geometries,

we concentrated on the structure of the causal boundary and showed that the LLM ge-

ometries fall into two classes, those with one dimensional light-like boundary and those

with four dimensional R × S3 boundary. The latter have 〈z〉 = 1
2 while the former have

〈z〉 6= 1
2 .

In [2] a class of half BPS eleven dimensional geometries with SU(4|2) super-isometries

have also been discussed. These are geometries governed by the Toda equation and the

singularity-free condition leads to two boundary conditions on the (x1, x2) plane. As we do

not know how to obtain a generic solution to the Toda equation, the analysis of the eleven
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dimensional LLM geometries has not been done at the same extent as the ten dimensional

case. There are, however, evidence supporting the idea that the eleven dimensional LLM

solutions can also be described through a distribution of “black and white” regions on the

(x1, x2) plane [22]. In this case, however, we do not have the black and white exchange

symmetry. A generalization of our discussions in section 2 indicates that from the causal

boundary viewpoint the eleven dimensional LLM geometries fall into three classes: those

which are black on the average have R×S2 boundary, those which are white on the average

have R × S5 boundary and those which are “gray” on the average have one dimensional

null boundary. Establishing the above statement and generalization of some of our results

to the eleven dimensional case is among the interesting questions we postpone to future

works [32].

It worth noting that in [22] another classification of the LLM geometries was considered

which has some overlaps with ours. In [22] the topology of the (x1, x2) plane was used

as the classification criterion, according which the (x1, x2) plane, which is necessarily a

flat two dimensional space in the ten dimensional LLM setup, may be an R2 plane, a

cylinder or a torus. Our classification is, however, based on 〈z〉 and is refined by the

zeroth, first and second moments of the z-distribution. As we discussed in some detail

that is at most the second moment which appears among the global charges governing

the geometries. At the gravity level these are the ADM type charges which correspond

to the rank of the gauge group and the global R-charge in the dual gauge theory. In

sections 3, 4 we discussed in detail which of these moments are the relevant ones for a

given distribution. It is of course interesting to generalize our classification criteria or

that of [22] to the eleven dimensional LLM solutions. In the eleven dimensional case,

unlike the ten dimensional case, the (x1, x2) plane is not necessarily a two dimensional flat

space. This, potentially, provides a greater variety of possibilities. Due to the conformal

symmetry of the Toda equation [2], one may use the Euler character of the (x1, x2) plane as

the base for classification. However, there seem to be some difficulties with the smoothness

of the compact (x1, x2) plane cases with non-vanishing Euler character [33] and hence

the smoothness condition forces us to three flat cases of R2 plane, cylinder and torus. A

detailed and thorough analysis of this obviously interesting direction is awaiting further

studies.

In section 4.2 we discussed z-distributions with scaling symmetry and discussed that

at “classical” level these distributions have a “singular” point, the fixed point of the scaling

symmetry, and that this singular point is removed by the “quantum” corrections and the

fact that the (x1, x2) plane is a noncommutative Moyal plane. In the same class of the LLM

geometries we discussed cases with Z2N isometries. Performing the orbifolds of this class

of geometries we find non-supersymmetric type IIB backgrounds which generically have

closed string tachyons. In these cases, it is usually believed that the orbifold singularity is

resolved when the tachyon is condensed. Here, however, as we discussed the resolution of

orbifold singularity can be understood through the quantum nature of the (x1, x2) plane and

that one cannot probe the (x1, x2) plane with precision higher than l4p using the spherical

threebrane probes. It is an interesting open question to address the tachyon dynamics in

the orbifolds of this class of LLM geometries.
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